Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions

نویسندگان

  • Michael Bleyer
  • Margrit Gelautz
چکیده

This paper describes a dense stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. Our basic assumptions are that disparity varies smoothly inside a segment, while disparity boundaries coincide with the segment borders. The use of these assumptions makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function. This cost function is based on the observation that occlusions cannot be dealt with in the domain of segments. Therefore, we propose a novel cost function that is defined on two levels, one representing the segments and the other corresponding to pixels. The basic idea is that a pixel has to be assigned to the same disparity layer as its segment, but can as well be occluded. The cost function is then effectively minimized via graph-cuts. In the experimental results, we show that our method produces good-quality results, especially in regions of low texture and close to disparity boundaries. Results obtained for the Middlebury test set indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms. r 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Segmentation-based Dense Stereo from Quasi-dense Matching

We propose a segmentation-based dense stereo algorithm within an energy minimization framework. The cost function includes a new consistency term to take into account an initial quasi-dense disparity map and handles occlusions explicitly. Based on quasi-dense matching and color segmentation, optimization is performed efficiently by assuming a constant disparity for each region. The assumption i...

متن کامل

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

Segmentation-Based Motion with Occlusions Using Graph-Cut Optimization

We propose to tackle the optical flow problem by a combination of two recent advances in the computation of dense correspondences, namely the incorporation of image segmentation and robust global optimization via graph-cuts. In the first step, each segment (extracted by colour segmentation) is assigned to an affine motion model from a set of sparse correspondences. Using a layered model, we the...

متن کامل

Graph-based surface reconstruction from stereo pairs using image segmentation

This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We...

متن کامل

Graph Based Semi-supervised Learning in Computer Vision

OF THE DISSERTATION Graph Based Semi-Supervised Learning in Computer Vision by Ning Huang Dissertation Director: Joseph Wilder Machine learning from previous examples or knowledge is a key element in many image processing and pattern recognition tasks, e.g. clustering, segmentation, stereo matching, optical flow, tracking and object recognition. Acquiring that knowledge frequently requires huma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Sig. Proc.: Image Comm.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2007